在△中,2b+1除2=cosC除cosA,求A
2个回答
展开全部
根据余弦定理有:
cos C = (a^2 + b^2 - c^2) / (2ab)
cos A = (b^2 + c^2 - a^2) / (2bc)
代入已知条件 2b + 1/2 = cos C / cos A 得:
2b + 1/2 = [(a^2 + b^2 - c^2) / (2ab)] / [(b^2 + c^2 - a^2) / (2bc)]
化简得:
4b^2c^2 + 2ac^4 - 2a^3b^2 - a^2b^2c - b^4c = 1
利用海龙公式可将面积表示为:
S = sqrt[s(s-a)(s-b)(s-c)] = sqrt[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] / 4
其中 s = (a+b+c) / 2 是半周长。
化简得:
16S^2 = 2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4
又因为 a^2 + b^2 - 2ab cos C = c^2,代入化简得:
a^2 + b^2 - 2ab [(a^2 + b^2 - c^2) / (2ab)] = c^2
化简得:
ab - acosC = b^2
代入已知条件 2b + 1/2 = cos C / cos A 可以求出 b 和 c:
2b + 1/2 = (a^2 + b^2 - c^2) / (2ab) * (2bc) / (b^2 + c^2 - a^2)
化简得:
4b^4c^2 + b^2c^4 - 2a^2b^3c + 2a^3b^2c - a^2b^2c^2 - b^6 = 1/4
将 b 和 c 代入上面的式子可以求得 a:
a = sqrt[(2b+1)^2/4 - 9/4]
最后代入 x²+xy+y²+2014 的表达式中即可求得答案:
x² + xy + y² + 2014 = a^2 + ab + b^2 + 2014
cos C = (a^2 + b^2 - c^2) / (2ab)
cos A = (b^2 + c^2 - a^2) / (2bc)
代入已知条件 2b + 1/2 = cos C / cos A 得:
2b + 1/2 = [(a^2 + b^2 - c^2) / (2ab)] / [(b^2 + c^2 - a^2) / (2bc)]
化简得:
4b^2c^2 + 2ac^4 - 2a^3b^2 - a^2b^2c - b^4c = 1
利用海龙公式可将面积表示为:
S = sqrt[s(s-a)(s-b)(s-c)] = sqrt[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] / 4
其中 s = (a+b+c) / 2 是半周长。
化简得:
16S^2 = 2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4
又因为 a^2 + b^2 - 2ab cos C = c^2,代入化简得:
a^2 + b^2 - 2ab [(a^2 + b^2 - c^2) / (2ab)] = c^2
化简得:
ab - acosC = b^2
代入已知条件 2b + 1/2 = cos C / cos A 可以求出 b 和 c:
2b + 1/2 = (a^2 + b^2 - c^2) / (2ab) * (2bc) / (b^2 + c^2 - a^2)
化简得:
4b^4c^2 + b^2c^4 - 2a^2b^3c + 2a^3b^2c - a^2b^2c^2 - b^6 = 1/4
将 b 和 c 代入上面的式子可以求得 a:
a = sqrt[(2b+1)^2/4 - 9/4]
最后代入 x²+xy+y²+2014 的表达式中即可求得答案:
x² + xy + y² + 2014 = a^2 + ab + b^2 + 2014
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
根据三角形中角度的性质,有:
A + B + C = 180°
移项得:
C = 180° - A - B
代入题目中的等式,得:
2b + 1 = cosC / cosA = cos(180° - A - B) / cosA = -cos(A + B) / cosA
将分母移到等式左侧,得:
2b cosA + cos(A + B) = -cosB
根据余弦定理:
cosB = (a^2 + c^2 - b^2) / 2ac
代入题目中的等式,得:
2b cosA + cos(A + B) = -(a^2 + c^2 - b^2) / 2ac
代入正弦定理:
a / sina = b / sinb = c / sinc
得:
a = 2bsinA
c = 2bsinC
代入上式,得:
4b^2 sinA cosA + cos(A + B) = -(4b^2sin^2A + 4b^2sin^2C - b^2) / 4b^2sinAsinC
化简得:
4sinAcosA + cos(A + B)sinAsinC = -sin^2A - sin^2C + 1 / 4
根据和差化积公式,有:
cos(A + B) = cosAcosB - sinAsinB
代入上式,得:
4sinAcosA + (cosAcosB - sinAsinB)sinAsinC = -sin^2A - sin^2C + 1 / 4
化简得:
4sinAcosA + cosAcosBsinAsinC - sin^2A sinC = -sin^2A - sin^2C + 1 / 4
移项,得:
4sinAcosA + sin^2A sinC - cosAcosBsinAsinC + sin^2A + sin^2C - 1 / 4 = 0
化简得:
(16sinAcosA + 4sin^3A sinC - 4cosAcosBsinAsinC + 4sin^3A + 4sin^3C - 1) / 16 = 0
移项,得:
16sinAcosA + 4sin^3A sinC - 4cosAcosBsinAsinC + 4sin^3A + 4sin^3C - 1 = 0
根据三角恒等式,有:
sin2x = 2sinx cosx
代入上式,得:
8sin2A + 2sin2A sinC - 2sin(A + B)sinAsinC + 2sin2A + 2sin^2C - 1 = 0
化简得:
10sin2A + 2sin2A sinC - 2sin(B - A)sinC - 1 = 0
根据正弦定理,有:
sinA / a = sinB / b
代入上式,得:
10sin2A + 2sin2A (c / 2b) - 2sin(B - A)(c / 2b) - 1 = 0
代入a = 2bsinA,得:
10sin2A + 2sinAcosA - 2sin(B - A)cosC - 1 = 0
代入cosC = (a^2 + b^2 - c^2) / 2ab,得:
10sin2A + 2sinAcosA - 2sin(B - A)(a^2 + b^2 - c^2) / 4ab - 1 = 0
代入B + C = 180° - A,得:
10sin2A + 2sinAcosA - 2sin(180° - 2A)((2bsinA)^2 + b^2 - (2bsinC)^2) / 4ab - 1 = 0
化简得:
10sin2A + 2sinAcosA + sin2A - 5 / 4 = 0
移项,得:
14sin2A + 4sinAcosA - 5 = 0
根据三角恒等式,有:
sin2x = 2sinx cosx
代入上式,得:
28sinAcosA + 8cos^2A - 10 = 0
根据三角恒等式,有:
1 + tan^2x = sec^2x
代入上式,得:
28sinAcosA + 8(1 + sin^2A) - 10 = 0
化简得:
36sin^2A + 28sinA - 2 = 0
解得:
sinA = (-7 ± sqrt(55)) / 18
因为0° < A < 180°,所以:
sinA = (-7 + sqrt(55)) / 18
将sinA代入原等式中,得:
2b + 1 = cosC / cosA
代入cosC = (a^2 + b^2 - c^2) / 2ab,得:
2b + 1 = (a^2 + b^2 - c^2) / 2abcosA
代入a = 2bsinA,c = 2bsinC,得:
2b + 1 = (4b^2sin^2A + b^2 - 4b^2sin^2C) / 8b^2sinAsinCcosA
化简得:
16sinAcosA + 4sin^3A sinC - 4cosAcosBsinAsinC + 4sin^3A + 4sin^3C - 1 = 0
将sinA代入上式,代入cosC = (a^2 + b^2 - c^2) / 2ab和a = 2bsinA,c = 2bsinC,得:
8sin2A + 2sin2A (c / 2b) - 2sin(B - A)(c / 2b) - 1 = 0
代入B + C = 180° - A,得:
10sin2A + 2sinAcosA + sin2A - 5 / 4 = 0
解得:
sinA = (-7 + sqrt(55)) / 18
因为0° < A < 180°,所以:
A ≈ 100.92°
因此,A约为100.92度。
A + B + C = 180°
移项得:
C = 180° - A - B
代入题目中的等式,得:
2b + 1 = cosC / cosA = cos(180° - A - B) / cosA = -cos(A + B) / cosA
将分母移到等式左侧,得:
2b cosA + cos(A + B) = -cosB
根据余弦定理:
cosB = (a^2 + c^2 - b^2) / 2ac
代入题目中的等式,得:
2b cosA + cos(A + B) = -(a^2 + c^2 - b^2) / 2ac
代入正弦定理:
a / sina = b / sinb = c / sinc
得:
a = 2bsinA
c = 2bsinC
代入上式,得:
4b^2 sinA cosA + cos(A + B) = -(4b^2sin^2A + 4b^2sin^2C - b^2) / 4b^2sinAsinC
化简得:
4sinAcosA + cos(A + B)sinAsinC = -sin^2A - sin^2C + 1 / 4
根据和差化积公式,有:
cos(A + B) = cosAcosB - sinAsinB
代入上式,得:
4sinAcosA + (cosAcosB - sinAsinB)sinAsinC = -sin^2A - sin^2C + 1 / 4
化简得:
4sinAcosA + cosAcosBsinAsinC - sin^2A sinC = -sin^2A - sin^2C + 1 / 4
移项,得:
4sinAcosA + sin^2A sinC - cosAcosBsinAsinC + sin^2A + sin^2C - 1 / 4 = 0
化简得:
(16sinAcosA + 4sin^3A sinC - 4cosAcosBsinAsinC + 4sin^3A + 4sin^3C - 1) / 16 = 0
移项,得:
16sinAcosA + 4sin^3A sinC - 4cosAcosBsinAsinC + 4sin^3A + 4sin^3C - 1 = 0
根据三角恒等式,有:
sin2x = 2sinx cosx
代入上式,得:
8sin2A + 2sin2A sinC - 2sin(A + B)sinAsinC + 2sin2A + 2sin^2C - 1 = 0
化简得:
10sin2A + 2sin2A sinC - 2sin(B - A)sinC - 1 = 0
根据正弦定理,有:
sinA / a = sinB / b
代入上式,得:
10sin2A + 2sin2A (c / 2b) - 2sin(B - A)(c / 2b) - 1 = 0
代入a = 2bsinA,得:
10sin2A + 2sinAcosA - 2sin(B - A)cosC - 1 = 0
代入cosC = (a^2 + b^2 - c^2) / 2ab,得:
10sin2A + 2sinAcosA - 2sin(B - A)(a^2 + b^2 - c^2) / 4ab - 1 = 0
代入B + C = 180° - A,得:
10sin2A + 2sinAcosA - 2sin(180° - 2A)((2bsinA)^2 + b^2 - (2bsinC)^2) / 4ab - 1 = 0
化简得:
10sin2A + 2sinAcosA + sin2A - 5 / 4 = 0
移项,得:
14sin2A + 4sinAcosA - 5 = 0
根据三角恒等式,有:
sin2x = 2sinx cosx
代入上式,得:
28sinAcosA + 8cos^2A - 10 = 0
根据三角恒等式,有:
1 + tan^2x = sec^2x
代入上式,得:
28sinAcosA + 8(1 + sin^2A) - 10 = 0
化简得:
36sin^2A + 28sinA - 2 = 0
解得:
sinA = (-7 ± sqrt(55)) / 18
因为0° < A < 180°,所以:
sinA = (-7 + sqrt(55)) / 18
将sinA代入原等式中,得:
2b + 1 = cosC / cosA
代入cosC = (a^2 + b^2 - c^2) / 2ab,得:
2b + 1 = (a^2 + b^2 - c^2) / 2abcosA
代入a = 2bsinA,c = 2bsinC,得:
2b + 1 = (4b^2sin^2A + b^2 - 4b^2sin^2C) / 8b^2sinAsinCcosA
化简得:
16sinAcosA + 4sin^3A sinC - 4cosAcosBsinAsinC + 4sin^3A + 4sin^3C - 1 = 0
将sinA代入上式,代入cosC = (a^2 + b^2 - c^2) / 2ab和a = 2bsinA,c = 2bsinC,得:
8sin2A + 2sin2A (c / 2b) - 2sin(B - A)(c / 2b) - 1 = 0
代入B + C = 180° - A,得:
10sin2A + 2sinAcosA + sin2A - 5 / 4 = 0
解得:
sinA = (-7 + sqrt(55)) / 18
因为0° < A < 180°,所以:
A ≈ 100.92°
因此,A约为100.92度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询