一提初中数学几何题,有兴趣的帮帮忙,谢谢

如图,D为等边三角形ABC边BC反向延长线上的一点,P为AD上一点,∠CPD=120°,CP,AB交于点E,BF平行于AC交AD于点F。(1)求证:BE=BF-----这... 如图,D为等边三角形ABC边BC反向延长线上的一点,P为AD上一点,∠CPD=120°,
CP,AB交于点E,BF平行于AC交AD于点F。(1)求证:BE=BF-----这问最简单,可不答
(2)连接BP,求证:PD分之一 + PC分之一 = PB分之一 (这问最变态)会做的请
详答,谢谢
(3)若等边三角形的边长为2,P为AD中点时,求BD的长 (这问马马虎虎的答一答就可以了0

会做的都请帮帮忙啊,一点也好,谢谢啊,呵呵
展开
左岸笛声
2010-08-13 · TA获得超过2347个赞
知道小有建树答主
回答量:322
采纳率:0%
帮助的人:529万
展开全部
解:(1)(你要是会就不详细写了)
证明:∠FAB=∠ECB(都是60°-∠D)
在△AFB和△CEB中:∠FAB=∠ECB,AB=CB,∠FBA=∠EBC=60°
∴△AFB≌△CEB,∴BE=BF
(2) 将△PBC逆时针旋转60°至△MBA,
则BM=BP,∠MBP=60°(旋转角60°),
∴△MBP为等边三角形,∠MPB=60°
∵∠DPC=120°∴∠BPC=60°
∴△PBC∽△BEC,
∵∠D=60°-∠PCD=∠ACE
∴△PBD∽△AEC
∴PB/PC=BE/BC,PB/PD=AE/AC
∵AC=BC,∴PB/PC=BE/AC
∴1/PC=BE/(PB•AC),1/PD=AE/(PB•AC)
∴1/PC+1/PD=(AE+BE)/(PB•AC)
∵AE+BE=AB=AC
∴1/PC+1/PD=AC/(PB•AC)=1/PB
∴1/PC+1/PD=1/PB
(3) ∵∠APB=∠ABD=120°, ∠DAB=∠BAP
∴△APB∽△ABD
∴AB²=AP•AD=2AP²=4
∴AP=PD=√2,AD=2√2
作AQ⊥CD, ∵∠C=60°,AC=2
∴AQ=√3,BQ=CQ=1
∴DQ²=AD²-AQ²=(2√2) ²-(√3) ²=5
∴DQ=√5
∴BD=DQ-BQ=√5-1
神日热画0D
2010-08-13 · TA获得超过239个赞
知道小有建树答主
回答量:121
采纳率:0%
帮助的人:50.3万
展开全部
1、证明:
只要证明△ABF≌△CBE即可证明BE=BF
2、证明
容易证明△CPD相似△ABD
△CEB相似△AEP
得△BPD相似△CEA
得角CPB=60
得△CPB相似△CBE得PB/PB=BE/BC
△DBP相似△CEA得PB/PD=AE/AC
得PB/PB+PB/PD=(AE+EB)/BC=1
得1/PD+1/PC=1/PB
3、解
易得△ABD∽△APB
得AB^2=AP*AD
得AP=根2
根据余弦定理
得CD=1+根5
得BD=(根5)-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式