急需!!!定积分在物理方面的应用题
有一横截面积为S=20m^2,深为5m圆柱形的水池,现要将池中盛满的水全部抽到高为10m的水落塔顶上去,需要作多少功?答案是12.25乘以10^6(J)要详细解题过程...
有一横截面积为S=20m^2,深为5m圆柱形的水池,现要将池中盛满的水全部抽到高为10m的水落塔顶上去,需要作多少功?
答案是12.25乘以10^6(J) 要详细解题过程 展开
答案是12.25乘以10^6(J) 要详细解题过程 展开
3个回答
展开全部
这道题应该是高中物理竞赛的题吧,高中物理竞赛经常出这样的题,但是我认为不必使用定积分就可以得出结果。因为对于高中物理竞赛来说定积分是不要求掌握的,所以用普通的分段求和就可以了。不过我做出来是12.5*10^6J 不知是否我做错了!
首先可以画出图来一个在地下h的水池与在地上H的塔顶。然后对于水池,我们可以将其分为i份,显然,每一份的高度为h1=h2=h3=……=hi-1=hi=h/i
那么对于每一份水来说,质量均为m=M/i=密度*S*h/i
则对于h1:上升后克服重力做功为:
W1=mg(H+h-1/2h1) (考虑到重心在水柱的中间部位,所以有1/2)
对于h2:功为:
W2=mg(H+h-h1-1/2h2)
以此类推:
对于hi:功为:
Wi=mg(H+h-h1-h2-……-hi-1-1/2hi)
那么对于总功,就是将其相加:
W=W1+W2+W3+……+Wi=mg(iH+ih-1/2ih)
(解释:对于括号里的求和直接将其相加,然后将h1 h2 h3 h4 h5 等当成相等的量h/i 然后便是一个等差数列即可方便求值)
那么化简是:W=mg*5/2*h*i
又因为m=密度*S*h/i 所以带入后i约了那么式子为
W=(5*密度*S*h^2*g)/2=12.5*10^6J
我发现对于这道题的理解很容易出现歧义,例如,那个水池是高于地面还是低于地面?很明显是低于地面的,那么在画图时就要注意塔顶比水池底高出了H+h
如果是高于的话,那么采用我的方法可以得到功7.5*10^6J
但明显应该是低于,所以答案12.5*10^6J O(∩_∩)O
首先可以画出图来一个在地下h的水池与在地上H的塔顶。然后对于水池,我们可以将其分为i份,显然,每一份的高度为h1=h2=h3=……=hi-1=hi=h/i
那么对于每一份水来说,质量均为m=M/i=密度*S*h/i
则对于h1:上升后克服重力做功为:
W1=mg(H+h-1/2h1) (考虑到重心在水柱的中间部位,所以有1/2)
对于h2:功为:
W2=mg(H+h-h1-1/2h2)
以此类推:
对于hi:功为:
Wi=mg(H+h-h1-h2-……-hi-1-1/2hi)
那么对于总功,就是将其相加:
W=W1+W2+W3+……+Wi=mg(iH+ih-1/2ih)
(解释:对于括号里的求和直接将其相加,然后将h1 h2 h3 h4 h5 等当成相等的量h/i 然后便是一个等差数列即可方便求值)
那么化简是:W=mg*5/2*h*i
又因为m=密度*S*h/i 所以带入后i约了那么式子为
W=(5*密度*S*h^2*g)/2=12.5*10^6J
我发现对于这道题的理解很容易出现歧义,例如,那个水池是高于地面还是低于地面?很明显是低于地面的,那么在画图时就要注意塔顶比水池底高出了H+h
如果是高于的话,那么采用我的方法可以得到功7.5*10^6J
但明显应该是低于,所以答案12.5*10^6J O(∩_∩)O
展开全部
把圆柱形水切成无限多个小圆片,每片厚度为dz
则每片体积dV=Sdz
对每一个微元做的功dW=ρgdV×(10-z)=2×10^5(10-z)dz
设水底的圆心处为坐标原点
则做的总功W=∫dW=∫2×10^5(10-z)dz(0<=z<=5)
=10^7-10^5×25 J
= 75×10^5J
则每片体积dV=Sdz
对每一个微元做的功dW=ρgdV×(10-z)=2×10^5(10-z)dz
设水底的圆心处为坐标原点
则做的总功W=∫dW=∫2×10^5(10-z)dz(0<=z<=5)
=10^7-10^5×25 J
= 75×10^5J
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询