一道三角函数
在三角形ABC中,求(a-b)(cot(C/2))+(b-c)(cot(A/2))+(c-a)(cot(B/2))的值谢谢!...
在三角形ABC中,求(a-b)(cot(C/2))+(b-c)(cot(A/2))+(c-a)(cot(B/2))的值
谢谢! 展开
谢谢! 展开
1个回答
展开全部
根据正弦定理:
a/sinA = b/sinB = c/sinC = 2R (R是外接圆半径)
∴a = 2RsinA,b = 2RsinB,c = 2RsinC
而cot(C/2) = cot[(π/2) - (A+B)/2] = tan[(A+B)/2]
a-b = 2R·(sinA - sinB) = 2R·2sin[(A-B)/2]·cos[(A+B)/2]
∴(a-b)(cot(C/2)) = 2R·2sin[(A-B)/2]·sin[(A+B)/2]
= 2R·(cosB - cosA)
∴原式 = 2R·[(cosB - cosA)+(cosC - cosB)+(cosA - cosC)] = 0
a/sinA = b/sinB = c/sinC = 2R (R是外接圆半径)
∴a = 2RsinA,b = 2RsinB,c = 2RsinC
而cot(C/2) = cot[(π/2) - (A+B)/2] = tan[(A+B)/2]
a-b = 2R·(sinA - sinB) = 2R·2sin[(A-B)/2]·cos[(A+B)/2]
∴(a-b)(cot(C/2)) = 2R·2sin[(A-B)/2]·sin[(A+B)/2]
= 2R·(cosB - cosA)
∴原式 = 2R·[(cosB - cosA)+(cosC - cosB)+(cosA - cosC)] = 0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询