2个回答
展开全部
设该点对应的角度是A,由该点坐标(√6-√2,√6+√2),有:
(√6-√2)^+(√6+√2)^2=16,
cosA=(√6-√2)/4,sinA=(√6+√2)/4,
由于[A+(2π/3-A)]/2=π/3,
该点关于π/3的对称点对应的角度是2π/3-A,
cos(2π/3-A)=cos2π/3*cosA+sin2π/3*sinA=-(√6-√2)/4/2+√3(√6+√2)/4/2=√2/2,
sin(2π/3-A)=sin2π/3*cosA-cos2π/3*sinA=√3(√6-√2)/4/2+(√6+√2)/4/2=√2/2,
√2/2*4=2√2,
因此该点坐标为(2√2,2√2)..
(√6-√2)^+(√6+√2)^2=16,
cosA=(√6-√2)/4,sinA=(√6+√2)/4,
由于[A+(2π/3-A)]/2=π/3,
该点关于π/3的对称点对应的角度是2π/3-A,
cos(2π/3-A)=cos2π/3*cosA+sin2π/3*sinA=-(√6-√2)/4/2+√3(√6+√2)/4/2=√2/2,
sin(2π/3-A)=sin2π/3*cosA-cos2π/3*sinA=√3(√6-√2)/4/2+(√6+√2)/4/2=√2/2,
√2/2*4=2√2,
因此该点坐标为(2√2,2√2)..
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询