
已知函数f(x)=1/x-log2(1+x)/(1-x),求函数f(x)的定义域并讨论它的单调性
展开全部
根据题意,f(x)=1/x-log2[(1+x)/(1-x)],
为使函数有意义,
要求x≠0,(1+x)/(1-x)>0,
因此定义域是x∈(-1,0)∪(0,1)..
x∈(-1,0)时,
设-1<x1<x2<0,有:
f(x2)-f(x1)=1/x2-log2[(1+x2)/(1-x2)]-1/x1+log2[(1+x1)/(1-x1)]
=(x1-x2)/x1x2+log2{(1-x2)(1+x1)/[(1+x2)(1-x1)]}
=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]
由于x1<x2<0,
(x1-x2)/x1x2<0,
0<1-x2+x1-x1x2<1+x2-x1-x1x2,
因此0<(1-x2+x1-x1x2)/(1+x2-x1-x1x2)<1,
log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
因此f(x2)-f(x1)=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
即函数在(-1,0)上单调递减,
x∈(0,1)时,
设0<x1<x2<1,有:
f(x2)-f(x1)=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]
由于0<x1<x2,
(x1-x2)/x1x2<0,
0<1-x2+x1-x1x2<1+x2-x1-x1x2,
因此0<(1-x2+x1-x1x2)/(1+x2-x1-x1x2)<1,
log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
因此f(x2)-f(x1)=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
即函数在(0,1)上单调递减,
综上,函数f(x)的定义域是x∈(-1,0)∪(0,1),函数分别在区间(-1,0)和(0,1)上单调递减..
为使函数有意义,
要求x≠0,(1+x)/(1-x)>0,
因此定义域是x∈(-1,0)∪(0,1)..
x∈(-1,0)时,
设-1<x1<x2<0,有:
f(x2)-f(x1)=1/x2-log2[(1+x2)/(1-x2)]-1/x1+log2[(1+x1)/(1-x1)]
=(x1-x2)/x1x2+log2{(1-x2)(1+x1)/[(1+x2)(1-x1)]}
=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]
由于x1<x2<0,
(x1-x2)/x1x2<0,
0<1-x2+x1-x1x2<1+x2-x1-x1x2,
因此0<(1-x2+x1-x1x2)/(1+x2-x1-x1x2)<1,
log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
因此f(x2)-f(x1)=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
即函数在(-1,0)上单调递减,
x∈(0,1)时,
设0<x1<x2<1,有:
f(x2)-f(x1)=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]
由于0<x1<x2,
(x1-x2)/x1x2<0,
0<1-x2+x1-x1x2<1+x2-x1-x1x2,
因此0<(1-x2+x1-x1x2)/(1+x2-x1-x1x2)<1,
log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
因此f(x2)-f(x1)=(x1-x2)/x1x2+log2[(1-x2+x1-x1x2)/(1+x2-x1-x1x2)]<0,
即函数在(0,1)上单调递减,
综上,函数f(x)的定义域是x∈(-1,0)∪(0,1),函数分别在区间(-1,0)和(0,1)上单调递减..
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询