初二的奥数,麻烦各位高手

(1)设a+b+2c=1,a^2+b^2-8c^2+6c+5,求ab-bc-ca的值(2)设正有理数a,b,c满足条件:a+b+c小于等于4,且ab+bc+ca大于等于4... (1)设a+b+2c=1,a^2+b^2-8c^2+6c+5,求ab-bc-ca的值
(2)设正有理数a,b,c满足条件:a+b+c小于等于4,且ab+bc+ca大于等于4,证明:下面三个不等式中至少有两个成立:|a-b|小于等于2,|c-a|小于等于2,|b-c|小于等于2
(3)已知0.25(b-c)^2=(a-b)(c-a),且a不等于0。求(b+c)/a的值
要有详细的过程,谢谢!
展开
毅丝托洛夫斯基
2010-08-15 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1958
采纳率:0%
帮助的人:3110万
展开全部
1、a+b+2c=1
a+b-c+3c=1
a+b-c=1-3c
(a+b-c) ² =(1-3c) ²
a²+b²+c²+2(ab-bc-ca)=(3c-1) ²

a²+b²-8c²+6c+5=0
a²+b²-8c²+6c=-5
a²+b²+c²-9c²+6c-1=-5-1
(a²+b²+c²)-(9c²-6c+1)=-6
(3c-1) ²-2(ab-bc-ca)- (3c-1) ²=-6
-2(ab-bc-ca)=-6
ab-bc-ca=3

∵a+b+c≤4
∴(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc≤16 ①
∵ab+bc+ca≥4 也即-(ab+bc+ca)≤-4 ②
①+3②a^2+b^2+c^2-ab-ac-bc≤4
∴(a-b)^2+(b-c)^2+(a-b)^2≤8
下面用反证法。
1.若|a-b|≤2, |b-c|≤2, |c-a|≤2全不成立,
即|a-b|>2, |b-c|>2, |c-a|>2
则(a-b)^2+(b-c)^2+(a-b)^2=|a-b|^2+|b-c|^2+|a-b|^2>12与(a-b)^2+(b-c)^2+(a-b)^2≤8矛盾,不成立
2.若有两项不成立,不妨令|a-b|>2, |b-c|>2, |c-a|≤2
则(a-b)^2+(b-c)^2+(a-b)^2=|a-b|^2+|b-c|^2+|a-b|^2≥|a-b|^2+|b-c|^2>8与(a-b)^2+(b-c)^2+(a-b)^2≤8矛盾,不成立
3.综上所述,|a-b|≤2, |b-c|≤2, |c-a|≤2至少有两项成立。

解:由已知得:
(b-c)²=4(a-b)×(c-a)
b²-2bc+c²=4(ac-a²-bc+ab)
b²+2bc+c²-4ac-4ab+4a²=0
(b+c)²-4a(b+c)+4a²=0
(b+c-2a)²=0
所以:b+c=2a,
则:(b+c)/a=2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式