已知等差数列an的前n项和为sn,且a2=4,s10=110,则sn+64/an的最小值为

xuzhouliuying
高粉答主

2013-12-30 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
设公差为d
S10=10a1+10×9d/2=10a1+45d=110
a1+4.5d=11 (1)
a2=a1+d=4 (2)
(1)-(2)
3.5d=7
d=2
a1=4-d=4-2=2
an=a1+(n-1)d=2+2(n-1)=2n
Sn=(a1+an)n/2=(2+2n)n/2=n(n+1)
(Sn+64)/an
=[n(n+1) +64]/(2n)
=(n+1)/2 +32/n
=n/2 +32/n +1/2
由均值不等式得n/2+32/n≥2√(n/2)(32/n)=8,当且仅当n=8时取等号,此时(Sn+64)/an有最小值:
[(Sn+64)/an]min=8+ 1/2=17/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式