1个回答
展开全部
解析式是变化的,不变的是整个函数的本质;
所谓换元法,就是把不熟悉的函数解析式,变换成我们所学过的函数类型的方法来解决问题。
也就是在原来解析式不太容易看出来我们所学过的函数类型的情况下,或者是所求函数含有根式等不容易化简计算的情况,我们利用把某些部分整体看成一个元素来进行运算。
但是本质上函数的部分没有大的改变,但是外在形式上和原来不太一样;
如:y=x+√(1-x)
整个根式内是一个整体,那么我就可以把整个根式看成一个元素,方便和我们所学过的函数联系;
故:令t=√(1-x)≥0,则x=1-t^2
∴y=1-t^2+t=-t^2+t+1,t≥0
就成了关于t的二次函数求值域了,因为是恒等变换(因为加了t的范围),所以关于t的二次函数值域等于原函数值域。
所谓换元法,就是把不熟悉的函数解析式,变换成我们所学过的函数类型的方法来解决问题。
也就是在原来解析式不太容易看出来我们所学过的函数类型的情况下,或者是所求函数含有根式等不容易化简计算的情况,我们利用把某些部分整体看成一个元素来进行运算。
但是本质上函数的部分没有大的改变,但是外在形式上和原来不太一样;
如:y=x+√(1-x)
整个根式内是一个整体,那么我就可以把整个根式看成一个元素,方便和我们所学过的函数联系;
故:令t=√(1-x)≥0,则x=1-t^2
∴y=1-t^2+t=-t^2+t+1,t≥0
就成了关于t的二次函数求值域了,因为是恒等变换(因为加了t的范围),所以关于t的二次函数值域等于原函数值域。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
整定计算是继电保护中的一项重要工作,旨在通过分析计算和整定,确定保护配置方式和整定值,以满足电力系统安全稳定运行的要求。在进行整定计算时,需要考虑到电力系统的各种因素,如电压等级、线路长度、变压器容量、负载情况等等,以及各种保护设备的特性、...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询