求解,高一数学
2个回答
2013-12-14
展开全部
过点E作EG⊥BB'于G,过点F做FH⊥BC于H。
因为,∠AB'B = ∠DBC = 45° ,且 B'E = BF ,
所以,EG = B'E·sin45° = BF·sin45° = FH 。
因为,BC⊥平面ABB'A ,
所以,BC⊥EG ;
而且,EG⊥BB' ,
所以,EG⊥平面BB'C'C ;
同理可得:FH⊥平面BB'C'C ;
即有:EG和FH分别是点E和点F到平面BB'C'C的距离。
因为,点E和点F到平面BB'C'C的距离相等,且两点在平面的同一侧,
所以,EF∥平面BB'C'C 。
因为,∠AB'B = ∠DBC = 45° ,且 B'E = BF ,
所以,EG = B'E·sin45° = BF·sin45° = FH 。
因为,BC⊥平面ABB'A ,
所以,BC⊥EG ;
而且,EG⊥BB' ,
所以,EG⊥平面BB'C'C ;
同理可得:FH⊥平面BB'C'C ;
即有:EG和FH分别是点E和点F到平面BB'C'C的距离。
因为,点E和点F到平面BB'C'C的距离相等,且两点在平面的同一侧,
所以,EF∥平面BB'C'C 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询