设数列{a n }的前n项和为S n ,已知a 1 =1,S n+1 =4a n +2,记b n =a n+1 -2a n .(Ⅰ)求b 1 ,并证明
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2,记bn=an+1-2an.(Ⅰ)求b1,并证明{bn}是等比数列;(Ⅱ)求数列{an}的通项公式....
设数列{a n }的前n项和为S n ,已知a 1 =1,S n+1 =4a n +2,记b n =a n+1 -2a n .(Ⅰ)求b 1 ,并证明{b n }是等比数列;(Ⅱ)求数列{a n }的通项公式.
展开
展开全部
(Ⅰ)∵a 1 =1,S n+1 =4a n +2, ∴S 2 =4a 1 +2=a 1 +a 2 ,a 2 =5, ∴b 1 =a 2 -2a 1 .=3, 另外,由S n+1 =4a n +2得,当n≥2时,有S n =4a n-1 +2, ∴S n+1 -S n =(4a n +2)-(4a n-1 +2), 即a n+1 =4a n -4a n-1 ,a n+1 -2a n =2(a n -2a n-1 ),n≥2 又∵b n =a n+1 -2a n .∴b n =2b n-1 . ∴数列{b n }是首项为3,公比为2的等比数列 (Ⅱ)由(Ⅰ)得,b n =3?2 n-1 , a n+1 -2a n =3?2 n-1 , ∴
a n =(3n-1)?2 n-2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询