(2014?红桥区二模)如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=3,DE=4,∠ADE的
(2014?红桥区二模)如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=3,DE=4,∠ADE的余弦值为45.(1)若F为DE的中点,求证...
(2014?红桥区二模)如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=3,DE=4,∠ADE的余弦值为45.(1)若F为DE的中点,求证:BE∥平面ACF;(2)求直线BE与平面ABCD所成角的正弦值.
展开
1个回答
展开全部
解:(1)证明:连接AC,BD交于O,连OF
∵F为DE中点,O为BD中点,
∴OF∥BE,OF?平面ACF,BE?平面ACF,
∴BE∥平面ACF.…(6分)
(2)过E作EH⊥AD于H,连接BH,
∵AE⊥平面CDE,CD?平面CDE,
∴AE⊥CD,
∵CD⊥AD,AE∩AD=A,AD、AE?平面DAE,
∴CD⊥平面DAE,EH?平面DAE,
∴CD⊥EH,CD∩AD=D,CD,
AD?平面ABCD,EH⊥平面ABCD,BH为BE在平面ABCD内的射影,
∴∠EBH为BE与平面ABCD的所成角的平面角,
在RT△EHB,由勾股定理得底面ABCD的边长AD=5.
又∵CD∥AB,∴AB⊥平面DAE,∴△ABE为直角三角形,∴BE=
=
,
∴BE=
,且HE=
=
,
在RT△EHB中,sin∠EBH=
=
=
.
直线BE与平面ABCD所成角的正弦值为
.…(14分)
∵F为DE中点,O为BD中点,
∴OF∥BE,OF?平面ACF,BE?平面ACF,
∴BE∥平面ACF.…(6分)
(2)过E作EH⊥AD于H,连接BH,
∵AE⊥平面CDE,CD?平面CDE,
∴AE⊥CD,
∵CD⊥AD,AE∩AD=A,AD、AE?平面DAE,
∴CD⊥平面DAE,EH?平面DAE,
∴CD⊥EH,CD∩AD=D,CD,
AD?平面ABCD,EH⊥平面ABCD,BH为BE在平面ABCD内的射影,
∴∠EBH为BE与平面ABCD的所成角的平面角,
在RT△EHB,由勾股定理得底面ABCD的边长AD=5.
又∵CD∥AB,∴AB⊥平面DAE,∴△ABE为直角三角形,∴BE=
BA2+AE2 |
25+9 |
∴BE=
34 |
EA?ED |
AD |
12 |
5 |
在RT△EHB中,sin∠EBH=
HE |
BE |
| ||
|
6
| ||
85 |
直线BE与平面ABCD所成角的正弦值为
6
| ||
85 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询