如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB、AC引垂线,垂足分别为E、F点.(1)当点D在BC的

如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB、AC引垂线,垂足分别为E、F点.(1)当点D在BC的什么位置时,DE=DF?并证明.(2)在满足第一问... 如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB、AC引垂线,垂足分别为E、F点.(1)当点D在BC的什么位置时,DE=DF?并证明.(2)在满足第一问的条件下,连接AD,此时图中共有几对全等三角形?并请给予写出.(3)过C点作AB边上的高CG,请问DE、DF、CG的长之间存在怎样的等量关系?并加以证明. 展开
 我来答
格雷XY85
推荐于2016-07-21 · TA获得超过242个赞
知道答主
回答量:182
采纳率:0%
帮助的人:149万
展开全部
解答:(1)当点D在BC的中点上时,DE=DF,
证明:∵D为BC中点,
∴BD=CD,
∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°,
∵在△BED和△CFD中
∠B=∠C
∠DEB=∠DFC
BD=CD

∴△BED≌△CFD(AAS),
∴DE=DF.

(2)解:
有3对全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD,
∵由(1)知△BED≌△CFD,
∴DE=DF,BE=CF,
∵AB=AC,
∴AE=AF,
在△AED和△AFD中
AD=AD
AE=AF
DE=DF

∴△AED≌△AFD(SSS),
∵在△ADB和△ADC中
AB=AC
AD=AD
BD=CD

∴△ADB≌△ADC(SSS),
∴有3对全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD;
(3)CG=DE+DF
证明:连接AD,
∵S三角形ABC=S三角形ADB+S三角形ADC
1
2
AB×CG=
1
2
AB×DE+
1
2
AC×DF,
∵AB=AC,
∴CG=DE+DF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式