如图,已知等腰三角形直角△ABC=90°,AC=BC=4,D为△ABC的一个外角∠ABF的角平分线上一点,
展开全部
(1)证明:过D点作DM⊥AB,DN⊥CB,垂足分别为M、N,
∴∠AMD=∠CND=90°
∵D为△ABC的一个外角∠ABF的平分线上一点,
∴DM=DN.
∵△ABC是等腰直角三角形,
∴∠BAC=∠CBA=45°.
∵∠ADC=45°,
∴∠ABC=∠ADC,
∵∠AED=∠CEB,
∴∠1=∠2.
在△AMD和△CND中,
∠1=∠2
∠AMD=∠CND
DM=DN
∴△ADM≌△CDN(AAS),
∴AD=CD;
(2)解:∵AD=CD,且∠ADC=45°,
∴∠ACD=∠DAC=67.5°,
∴∠1=22.5°.
∵∠AEC=∠1+∠ADC,
∴∠AEC=22.5°+45°=67.5°,
∴∠ACE=∠AEC,
∴AC=AE.
∵AC=4,
∴AE=4.
为梦想而生团队为你服务,希望对你有帮助,满意请及时采纳,不懂可追问!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |