如图所示,一辆质量是m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车之间的动摩擦因数μ=0.4,开
如图所示,一辆质量是m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车之间的动摩擦因数μ=0.4,开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向...
如图所示,一辆质量是m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车之间的动摩擦因数μ=0.4,开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车每一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?
展开
1个回答
展开全部
(1)设第一次碰墙壁后,平板车向左移动s,速度为0.
由于系统总动量向右,平板车速度为零时,滑块还在向右滑行.
由动能定理得
-μMgS=0-
m
①
s=
②
代入数据得s=
m ③
(2)假如平板车在第二次碰撞前还未和滑块相对静止,那么其速度的大小肯定还是2m/s,滑块的速度则大于2m/s,方向均向右.这样就违反动量守恒.
所以平板车在第二次碰撞前肯定已和滑块具有共同速度v.此即平板车碰墙前瞬间的速度.
Mv0-mv0=(m+M)v ④
∴v=
v0 ⑤
代入数据得v=
v0=0.4m/s ⑥
(3)平板车与墙壁发生多次碰撞,最后停在墙边.设滑块相对平板车总位移为l,
根据能量守恒则有:
(M+m)
=μMgl ⑦
l=
⑧
代入数据得l=
m
l即为平板车的最短长度.
答:(1)平板车每一次与墙壁碰撞后向左运动的最大距离是
m.
(2)平板车第二次与墙壁碰撞前瞬间的速度是0.4m/s.
(3)为使滑块始终不会滑到平板车右端,平板车至少
m
由于系统总动量向右,平板车速度为零时,滑块还在向右滑行.
由动能定理得
-μMgS=0-
1 |
2 |
v | 2 0 |
s=
| ||
2μMg |
代入数据得s=
1 |
3 |
(2)假如平板车在第二次碰撞前还未和滑块相对静止,那么其速度的大小肯定还是2m/s,滑块的速度则大于2m/s,方向均向右.这样就违反动量守恒.
所以平板车在第二次碰撞前肯定已和滑块具有共同速度v.此即平板车碰墙前瞬间的速度.
Mv0-mv0=(m+M)v ④
∴v=
M?m |
M+m |
代入数据得v=
1 |
5 |
(3)平板车与墙壁发生多次碰撞,最后停在墙边.设滑块相对平板车总位移为l,
根据能量守恒则有:
1 |
2 |
v | 2 0 |
l=
| ||
2μMg |
代入数据得l=
5 |
6 |
l即为平板车的最短长度.
答:(1)平板车每一次与墙壁碰撞后向左运动的最大距离是
1 |
3 |
(2)平板车第二次与墙壁碰撞前瞬间的速度是0.4m/s.
(3)为使滑块始终不会滑到平板车右端,平板车至少
5 |
6 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询