已知一兀/3<=x<=兀/4,f(x)=tan^2x十2tanx十2求f(x)的最值及相应的x值
1个回答
展开全部
利用公式cosαsinβ=[sin(α+β)-sin(α-β)]/2化简:
f(x)=4cosxsin(x+π/6)-1
=2sin(2x+π/6)-2sin(x-x-π/6)-1
=2sin(2x+π/6)
(1)f(x)的最小正周期T=2π/2=π
(2)在区间[-π/6,π/4]上,-π/6<=x<=π/4
所以:-π/6<=2x+π/6<=2π/3
所以:-1/2<=sin(2x+π/6)<=1
所以:-1<=f(x)<=2
所以:在区间[-π/6,π/4]上,f(x)的最大值为2,最小值为-1
f(x)=4cosxsin(x+π/6)-1
=2sin(2x+π/6)-2sin(x-x-π/6)-1
=2sin(2x+π/6)
(1)f(x)的最小正周期T=2π/2=π
(2)在区间[-π/6,π/4]上,-π/6<=x<=π/4
所以:-π/6<=2x+π/6<=2π/3
所以:-1/2<=sin(2x+π/6)<=1
所以:-1<=f(x)<=2
所以:在区间[-π/6,π/4]上,f(x)的最大值为2,最小值为-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询