已知圆 O:x2+y2=4,圆内有定点P(1,1),圆周上有两个动点A,B,使PA⊥PB,则矩形APBQ的顶点Q的轨迹方
已知圆O:x2+y2=4,圆内有定点P(1,1),圆周上有两个动点A,B,使PA⊥PB,则矩形APBQ的顶点Q的轨迹方程为______....
已知圆 O:x2+y2=4,圆内有定点P(1,1),圆周上有两个动点A,B,使PA⊥PB,则矩形APBQ的顶点Q的轨迹方程为______.
展开
展开全部
设A(x1,y1),B(x2,y2),Q(x,y),又P(1,1),
则x1+x2=x+1,y1+y2=y+1,
=(x1?1,y1?1),
=(x2?1,y2?1).
由PA⊥PB,得
?
=0,即(x1-1)(x2-1)+(y1-1)(y2-1)=0.
整理得:x1x2+y1y2-(x1+x2)-(y1+y2)+2=0,
即x1x2+y1y2=x+1+y+1-2=x+y ①
又∵点A、B在圆上,∴x12+y12=x22+y22=4 ②
再由|AB|=|PQ|,得(x1?x2)2+(y1?y2)2=(x?1)2+(y?1)2,
整理得:x12+x22+y12+y22?2x1x2?2y1y2=(x-1)2+(y-1)2 ③
把①②代入③得:x2+y2=6.
∴矩形APBQ的顶点Q的轨迹方程为:x2+y2=6.
故答案为:x2+y2=6.
则x1+x2=x+1,y1+y2=y+1,
PA |
PB |
由PA⊥PB,得
PA |
PB |
整理得:x1x2+y1y2-(x1+x2)-(y1+y2)+2=0,
即x1x2+y1y2=x+1+y+1-2=x+y ①
又∵点A、B在圆上,∴x12+y12=x22+y22=4 ②
再由|AB|=|PQ|,得(x1?x2)2+(y1?y2)2=(x?1)2+(y?1)2,
整理得:x12+x22+y12+y22?2x1x2?2y1y2=(x-1)2+(y-1)2 ③
把①②代入③得:x2+y2=6.
∴矩形APBQ的顶点Q的轨迹方程为:x2+y2=6.
故答案为:x2+y2=6.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询