已知各项均为正数的等比数列{an}的首项为a1=2,且4a1是2a2,a3的等差中项.(Ⅰ)求数列{an}的通项公式an
已知各项均为正数的等比数列{an}的首项为a1=2,且4a1是2a2,a3的等差中项.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若bn=anlog2an,Sn=b1+b2...
已知各项均为正数的等比数列{an}的首项为a1=2,且4a1是2a2,a3的等差中项.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)若bn=anlog2an,Sn=b1+b2+…+bn,求Sn.
展开
1个回答
展开全部
(Ⅰ)∵数列{an}为等比数列,a1=2,
∴a2=a1q=2q,a3=a1q2=2q2
∵4a1是2a2,a3,的等差中项,∴8a1=2a2+a3,即,16=2或=4q+2q2
解得,q=2或q=-4
∵数列{an}各项均为正数,∴q=-4舍去,
∴q=2,∴列{an}的通项公式an=2n
(Ⅱ)把an=2n代入bn=anlog2an,得,bn=2nlog22n=n2n,
∴Sn=1×2+2×22+3×23+…+n2n ①
2Sn=1×22+2×23+3×24+…+n2n+1 ②
①-②,得-Sn=2+22+23+…+2n-n2n+1=
-n2n+1=2n+1-2-n2n+1
∴Sn=-2n+1+2+n2n+1=(n-1)2n+1+2
∴a2=a1q=2q,a3=a1q2=2q2
∵4a1是2a2,a3,的等差中项,∴8a1=2a2+a3,即,16=2或=4q+2q2
解得,q=2或q=-4
∵数列{an}各项均为正数,∴q=-4舍去,
∴q=2,∴列{an}的通项公式an=2n
(Ⅱ)把an=2n代入bn=anlog2an,得,bn=2nlog22n=n2n,
∴Sn=1×2+2×22+3×23+…+n2n ①
2Sn=1×22+2×23+3×24+…+n2n+1 ②
①-②,得-Sn=2+22+23+…+2n-n2n+1=
2(1?2n) |
1?2 |
∴Sn=-2n+1+2+n2n+1=(n-1)2n+1+2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询