已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程

已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.... 已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程. 展开
 我来答
贰吃糠3229
推荐于2016-05-19 · TA获得超过216个赞
知道答主
回答量:123
采纳率:0%
帮助的人:154万
展开全部
设动圆圆心M(x,y),半径为r,
∵圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,
∴|MC1|=r+
2
,|MC2|=r-
2

∴|MC1|-|MC2|=2
2
<8,
由双曲线的定义,可得a=
2
,c=4;则b2=c2-a2=14;
∴点M的轨迹是以点C1,C2为焦点的双曲线的一支,
∴动圆圆心M的轨迹方程:
x2
2
-
y2
14
=1(x≥
2
)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式