设n为整数用因式分解说明括号2n+1^2-25能被四整除。

 我来答
数学好好玩
2015-06-17 · 中小学教师、教育领域创作者
数学好好玩
采纳数:12235 获赞数:136783

向TA提问 私信TA
展开全部
解:(2n+1)^2-25
=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4)
=4(n+3)(n-2)
因为n为正数,
所以,n+3、n-2都是整数,
则4(n+3)(n-2)是4的整数倍,能被4整除,
即(2n+1)^2-25能被4整除.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式