y=ln(4+x)利用间接展开法展开成x的幂级数
2个回答
展开全部
f(x) =ln(4+x)
f'(x) = 1/(4+x)
f''(x) = -1/(4+x)^2
f^(n)(x) = (-1)^(n-1) . (n-1)!/(4+x)^n
f^(n)(0) /n! = (-1)^(n-1). (1/4)^n /n
f(x) = f(0) +[f'(0)/1!] x + [f''(0)/2!] x^2+....
= ln4 + (1/4)x - (1/4)^2 (x^2/2)+...+ (-1)^(n-1) .(1/4)^n .(x^n/n)+....+...
f'(x) = 1/(4+x)
f''(x) = -1/(4+x)^2
f^(n)(x) = (-1)^(n-1) . (n-1)!/(4+x)^n
f^(n)(0) /n! = (-1)^(n-1). (1/4)^n /n
f(x) = f(0) +[f'(0)/1!] x + [f''(0)/2!] x^2+....
= ln4 + (1/4)x - (1/4)^2 (x^2/2)+...+ (-1)^(n-1) .(1/4)^n .(x^n/n)+....+...
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询