∑(-1)^n的敛散性,是发散的吗?
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
是发散的
解题过程如下:
由Leibniz判别法,可知级数∑(-1)^n/√n收敛
两级数相减可得:
∑(-1)^n·(1/√n-1/(√n+(-1)^n))
= ∑1/(√n(√n+(-1)^n))
∵ 通项与1/n是等价无穷小
∴比较判别法知级数发散
∴∑(-1)^n/(√n+(-1)^n))作为一个收敛级数与一个发散级数之差是发散的
扩展资料
求收敛级数的方法:
函数级数是形如∑an(x-x0)^n的级数,称之为幂级数。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。
例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。
如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界。
例如∑1/n!收敛,因为:Sm=1+1/2!+1/3!+···+1/m!<1+1+1/2+1/22+···+1/2^(m-1)<3(2^3表示2的3次方)。
如果级数的每一项依赖于变量x,x 在某区间I内变化,即un=un(x),x∈I,则∑un(x)称为函数项级数,简称函数级数。
若x=x0使数项级数∑un(x0)收敛,就称x0为收敛点,由收敛点组成的集合称为收敛域,若对每一x∈I,级数∑un(x)都收敛,就称I为收敛区间。
函数级数在其收敛域内定义了一个函数,称之为和函数S(x),即S(x)=∑un(x)如果满足更强的条件,Sm(x)在收敛域内一致收敛于S(x)。
是发散的
解题过程如下:
由Leibniz判别法,可知级数∑(-1)^n/√n收敛
两级数相减可得:
∑(-1)^n·(1/√n-1/(√n+(-1)^n))
= ∑1/(√n(√n+(-1)^n))
∵ 通项与1/n是等价无穷小
∴比较判别法知级数发散
∴∑(-1)^n/(√n+(-1)^n))作为一个收敛级数与一个发散级数之差是发散的
扩展资料
求收敛级数的方法:
函数级数是形如∑an(x-x0)^n的级数,称之为幂级数。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。
例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。
如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界。
例如∑1/n!收敛,因为:Sm=1+1/2!+1/3!+···+1/m!<1+1+1/2+1/22+···+1/2^(m-1)<3(2^3表示2的3次方)。
如果级数的每一项依赖于变量x,x 在某区间I内变化,即un=un(x),x∈I,则∑un(x)称为函数项级数,简称函数级数。
若x=x0使数项级数∑un(x0)收敛,就称x0为收敛点,由收敛点组成的集合称为收敛域,若对每一x∈I,级数∑un(x)都收敛,就称I为收敛区间。
函数级数在其收敛域内定义了一个函数,称之为和函数S(x),即S(x)=∑un(x)如果满足更强的条件,Sm(x)在收敛域内一致收敛于S(x)。
1.先证该级数与∑lnn/n收敛性相同。由数列极限与函数极限的关系可知当x→0时,有lim[n^(1/n)-1]/[lnn/n]=1(这个极限我在这里不详细证明了,其实很简单,就是一个等价无穷小的关系),因此依照比较审敛法的极限形式很显然原级数与∑lnn/n有相同的收敛性。
2.再证∑lnn/n发散。这个就不用我多说了吧,与调和级数比较一下就知道它是发散的了。