)如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F。 求证:AF平分∠BAC。
)如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F。求证:AF平分∠BAC。...
)如图:在△ABC,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F。
求证:AF平分∠BAC。 展开
求证:AF平分∠BAC。 展开
展开全部
证明:∵AB=AC(已知),
∴∠ABC=∠ACB(等边对等角).
∵BD、CE分别是高,
∴BD⊥AC,CE⊥AB(高的定义).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°-∠ABC,∠DBC=90°-∠ACB.
∴∠ECB=∠DBC(等量代换).
∴FB=FC(等角对等边),
在△ABF和△ACF中,
AB=AC
AF=AF
FB=FC
,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形对应角相等),
∴AF平分∠BAC.
先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.
∴∠ABC=∠ACB(等边对等角).
∵BD、CE分别是高,
∴BD⊥AC,CE⊥AB(高的定义).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°-∠ABC,∠DBC=90°-∠ACB.
∴∠ECB=∠DBC(等量代换).
∴FB=FC(等角对等边),
在△ABF和△ACF中,
AB=AC
AF=AF
FB=FC
,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形对应角相等),
∴AF平分∠BAC.
先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.
2010-08-17
展开全部
BD=CE(面积 BD*AC=CE*AB)
AEC ABD全等
AFC AFB全等
得证
AEC ABD全等
AFC AFB全等
得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询