分块矩阵求逆矩阵有哪些公式
4个回答
展开全部
1、A00BxA^(-1) 00B^(-1)=AA^(-1)+00 A0+0B^(-1)0A^(-1)+0B 00+BB^(-1)
2、E00E即单位矩阵.故上一个分块矩阵的逆等于下一个分块矩阵。
对于加法,相容要求两个矩阵按同样的方式分块;而对于乘法,在矩阵A与矩阵B相乘时,对B的一个分块方式,A可以有几种分块方式与之相容,这时便要考虑哪种分块方式使运算更加简便。
扩展资料
一、总结应用:
以22分块矩阵的研究方法为基础,探讨研究了33分块矩阵的可逆性存在条件以及求逆公式,并试证成功,还总结出研究更高阶分块矩阵求逆方法。
此外本文不仅侧重理论研究,而且侧重于实际应用,在文中列举了大量典型的阶数较高的矩阵,对他们如何分块才能使求逆过程更为简单作出分析,并给出了求解过程,真正做到了“理论联系实际”。
二、运用技巧:
在具体的运算中,要根据运算灵活地分块,上述方法只是比较常用,可以灵活地运用,宗旨是使运算变得更加简便。
此外,在矩阵加法和乘法的运算中,分块矩阵的维数必须加以限制,以使所定义的运算能够进行。称任何满足上面这种限制的矩阵分块关于所讨论的运算是相容的。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
如果a是分块对角矩阵,则分别对每个分块矩阵求逆就行了。如果分块矩阵不是分块对角矩阵,求逆则比较麻烦,一般按普通矩阵求逆就行了。 但是矩阵的逆的存在是有前提的,矩阵的行列式必须不等于零。你问题中的矩阵的行列式为零,所以逆矩阵不存在。。
正弦振...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐于2017-12-06
展开全部
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。
设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0, △x2=x2-x1, …, △xn=xn-xn-1。在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式
。设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。
设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0, △x2=x2-x1, …, △xn=xn-xn-1。在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式
。设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看过减肥好东西开工资看一下哟陷入大家闺秀看一下可以出来花擦路发都看过,了很残酷刚下课太大
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询