1/根号下(x-a)(b-x) (a<b )的不定积分

 我来答
简单生活Eyv
2021-08-04 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:25.2万
展开全部

=[1/(a-b)][ln|(x-a)/(x-b)|+C

∫1/{(x-a)(b-x)}dx=[1/(a-b)]∫[1/(x-a)-1/(x-b)]dx

=[1/(a-b)][ln|x-a|-ln|x-b|]+C

=[1/(a-b)][ln|(x-a)/(x-b)|+C

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

不定积分的意义

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明。

教育小百科达人
2019-05-03 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

∫1/{(x-a)(b-x)}dx=[1/(a-b)]∫[1/(x-a)-1/(x-b)]dx

=[1/(a-b)][ln|x-a|-ln|x-b|]+C

=[1/(a-b)][ln|(x-a)/(x-b)|+C

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明。

参考资料来源:百度百科——不定积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-10-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1614万
展开全部

可以直接套公式

也可以用换元法算

先说公式法,简单快捷

直接套公式76

换元法比较麻烦,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东风冷雪
2016-11-28 · TA获得超过3945个赞
知道大有可为答主
回答量:3910
采纳率:76%
帮助的人:980万
展开全部

如图,给你一个提示。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式