如图,P是等边三角形ABC内一点连结PAPB,PC以BP为边作∠PBQ=60度,且BQ=BP,连结CQ

猜想AP与CQ之间的大小关系,并证明。若PA:PB:PC=3:4:5,连结PQ,试判断世界性PQC的形状,并说明理由... 猜想AP与CQ之间的大小关系,并证明。
若PA:PB:PC=3:4:5,连结PQ,试判断世界性PQC的形状,并说明理由
展开
wudinglan
2010-08-17 · TA获得超过1046个赞
知道答主
回答量:116
采纳率:0%
帮助的人:38.6万
展开全部
AP=CQ
∵BP=BQ ∠PBQ=60度
∴BPQ是等边三角形
∵ABC,BPQ是等边三角形
∴AB=BC BP=BQ ∠PBQ=60度 ∠ABC=60
∵∠PBQ=60度 ∠ABC=60
∴∠PBQ-∠PBC=∠ABC-∠PBC
即∠ABP=∠CBQ
又∵AB=BC BP=BQ
∴△ABP与△BCQ全等
∴AP=CQ

∵AP=CQ BPQ是等边三角形
∴AP=CQ BP=PQ
∴PA:PB:PC=CQ:PQ:PC=3:4:5
根据勾股定理逆定理得出PQC是直角三角形
纯手工答案哦,要给分啊~~~
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式