方程怎么化简成一元二次方程的一般形式
这是要看这个方程的,首先它是否满足一元二次方程的形式:
比如X^2+X+3=0,这就是一个一元二次方程的其中一种形式。
当一个方程的未知数的最高次数是2,而且在化简之后,还可以保留一个含有2次方的未知数,它就一定可以被化简。
比如说X^2+3=X^2-X+2,这个方程经过化简就成了一元一次方程,所以不符合你的意思。而对于X^2+7=2X^2+4 这个方程经过化简仍然有一个-X^2,所以你可以把它化为一个二元一次方程。
扩展资料:
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;
③未知数项的最高次数是2。
含义及特点
(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。
(2)由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式(
)决定 。
判别式
利用一元二次方程根的判别式(
)可以判断方程的根的情况 [5] 。
一元二次方程
的根与根的判别式 有如下关系:
①当
时,方程有两个不相等的实数根;
②当
时,方程有两个相等的实数根;
③当
时,方程无实数根,但有2个共轭复根。
上述结论反过来也成立。
参考资料来源:百度百科--一元二次方程