在△ABC中,∠A=60°,c=3/7a.(Ⅰ)求sinC的值;(Ⅱ)若a=7,求△ABC的面积.
展开全部
sinC=3√3/14。△ABC的面积=6√3。
解答过程如下:
求sinC是根据正弦定理。求△ABC的面积需要用到余弦定理。
扩展资料:
正弦定理在解三角形中,有以下的应用领域:
1、已知三角形的两角与一边,解三角形。
2、已知三角形的两边和其中一边所对的角,解三角形。
3、运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。
物理学中,有的物理量可以构成矢量三角形 。因此, 在求解矢量三角形边角关系的物理问题时, 应用正弦定理,常可使一些本来复杂的运算,获得简捷的解答。
余弦定理是解三角形中的一个重要定理,可应用于以下三种需求:
1、当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。
2、当已知三角形的三边,可以由余弦定理得到三角形的三个内角。
3、当已知三角形的三边,可以由余弦定理得到三角形的面积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询