高数,这道题怎么求,求过程
1个回答
展开全部
隔项级数,则收敛半径的平方是
R^2 = lim<n→∞>|a<n>/a<n+1>|
= lim<n→∞>|n^2[2^(n+1)+(-3)^(n+1)]/{(n+1)^2[2^n+(-3)^n]}|
= lim<n→∞>n^2/(n+1)^2 lim<n→∞>|[2^(n+1)+(-3)^(n+1)]/[2^n+(-3)^n]|
= 1· lim<n→∞>|[2(2/3)^n+(-3)(-1)^n]/[(2/3)^n+(-1)^n]| = 3
R = √3
R^2 = lim<n→∞>|a<n>/a<n+1>|
= lim<n→∞>|n^2[2^(n+1)+(-3)^(n+1)]/{(n+1)^2[2^n+(-3)^n]}|
= lim<n→∞>n^2/(n+1)^2 lim<n→∞>|[2^(n+1)+(-3)^(n+1)]/[2^n+(-3)^n]|
= 1· lim<n→∞>|[2(2/3)^n+(-3)(-1)^n]/[(2/3)^n+(-1)^n]| = 3
R = √3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询