函数f(x)=sin(wx+φ)+cos(wx+φ)(w﹥0,|φ|﹤π/2)的最小正周期为π,且f(-x)=f(x)则它的单调区间
2个回答
展开全部
解:函数f(x)
=
sin(wx
+
φ)
+
cos(wx
+
φ)
=
√2sin(wx
+
φ
+
π/4)的最小正周期为π,所以2π/|w|
=
2π/w
=
π,可得w
=
2,所以函数f(x)
=
√2sin(2x
+
φ
+
π/4)
;
任取x∈R,那么f(-x)
=
√2sin(-2x
+
φ
+
π/4),由已知f(-x)
=
f(x),所以√2sin(-2x
+
φ
+
π/4)
=
√2sin(2x
+
φ
+
π/4),即sin(-2x
+
φ
+
π/4)
=
sin(2x
+
φ
+
π/4),所以有
-2x
+
φ
+
π/4
=
2kπ
+
π
–
(2x
+
φ
+
π/4),k∈Z,整理可得
-2x
+
φ
+
π/4
=
2kπ
+
π
–
2x
–
φ
–
π/4,移项可得2φ
=
2kπ
+
π/2,k∈Z,所以φ
=
kπ
+
π/4,k∈Z,由已知|φ|
<
π/2,即
-π/2
<
φ
<
π/2,所以当且仅当k
=
0时,φ
=
π/4,代入可得f(x)
=
√2sin(2x
+
π/4
+
π/4)
=
√2sin(2x
+
π/2)
=
√2cos2x,即f(x)
=
√2cos2x,以下求单调区间:
1)当2kπ
–
π
≤
2x
≤
2kπ,k∈Z时,f(x)
=
√2cos2x单调递增。化简可得kπ
–
π/2
≤
x
≤
kπ,k∈Z;
2)当2kπ
≤
2x
≤
2kπ
+
π,k∈Z时,f(x)
=
√2cos2x单调递减。化简可得kπ
≤
x
≤
kπ
+
π/2,k∈Z;
综上所述,函数f(x)
=
√2cos2x的
单调递增区间
是
[
kπ
–
π/2
,
kπ]
,
k
∈
Z
,函数f(x)
=
√2cos2x的
单调递减区间
是
[
kπ
,
kπ
+
π/2]
,
k
∈
Z
。
=
sin(wx
+
φ)
+
cos(wx
+
φ)
=
√2sin(wx
+
φ
+
π/4)的最小正周期为π,所以2π/|w|
=
2π/w
=
π,可得w
=
2,所以函数f(x)
=
√2sin(2x
+
φ
+
π/4)
;
任取x∈R,那么f(-x)
=
√2sin(-2x
+
φ
+
π/4),由已知f(-x)
=
f(x),所以√2sin(-2x
+
φ
+
π/4)
=
√2sin(2x
+
φ
+
π/4),即sin(-2x
+
φ
+
π/4)
=
sin(2x
+
φ
+
π/4),所以有
-2x
+
φ
+
π/4
=
2kπ
+
π
–
(2x
+
φ
+
π/4),k∈Z,整理可得
-2x
+
φ
+
π/4
=
2kπ
+
π
–
2x
–
φ
–
π/4,移项可得2φ
=
2kπ
+
π/2,k∈Z,所以φ
=
kπ
+
π/4,k∈Z,由已知|φ|
<
π/2,即
-π/2
<
φ
<
π/2,所以当且仅当k
=
0时,φ
=
π/4,代入可得f(x)
=
√2sin(2x
+
π/4
+
π/4)
=
√2sin(2x
+
π/2)
=
√2cos2x,即f(x)
=
√2cos2x,以下求单调区间:
1)当2kπ
–
π
≤
2x
≤
2kπ,k∈Z时,f(x)
=
√2cos2x单调递增。化简可得kπ
–
π/2
≤
x
≤
kπ,k∈Z;
2)当2kπ
≤
2x
≤
2kπ
+
π,k∈Z时,f(x)
=
√2cos2x单调递减。化简可得kπ
≤
x
≤
kπ
+
π/2,k∈Z;
综上所述,函数f(x)
=
√2cos2x的
单调递增区间
是
[
kπ
–
π/2
,
kπ]
,
k
∈
Z
,函数f(x)
=
√2cos2x的
单调递减区间
是
[
kπ
,
kπ
+
π/2]
,
k
∈
Z
。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询