求这道不定积分答案及过程
展开全部
∫x^2arctanxdx
=(1/3)∫arctanxdx^3
=(1/3)x^3arctanx-(1/3)∫x^3darctanx
=(1/3)x^3arctanx-(1/3)∫[(x^3+x)-x]/(1+x^2)dx
=(1/3)x^3arctanx-(1/3)∫xdx+(1/3)∫(x)/(1+x^2)dx
=(1/3)x^3arctanx-(1/6)x^2+(1/6)ln(1+x^2)+C
=(1/3)∫arctanxdx^3
=(1/3)x^3arctanx-(1/3)∫x^3darctanx
=(1/3)x^3arctanx-(1/3)∫[(x^3+x)-x]/(1+x^2)dx
=(1/3)x^3arctanx-(1/3)∫xdx+(1/3)∫(x)/(1+x^2)dx
=(1/3)x^3arctanx-(1/6)x^2+(1/6)ln(1+x^2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
I = (1/3)∫arctanxd(x^3)
= (1/3)x^3arctanx - (1/3)∫[x^3/(1+x^2)]dx
= (1/3)x^3arctanx - (1/3)∫[(x^3+x-x)/(1+x^2)]dx
= (1/3)x^3arctanx - (1/3)∫[x-x/(1+x^2)]dx
= (1/3)x^3arctanx - (1/6)[x^2-ln(1+x^2)] + C
= (1/3)x^3arctanx - (1/3)∫[x^3/(1+x^2)]dx
= (1/3)x^3arctanx - (1/3)∫[(x^3+x-x)/(1+x^2)]dx
= (1/3)x^3arctanx - (1/3)∫[x-x/(1+x^2)]dx
= (1/3)x^3arctanx - (1/6)[x^2-ln(1+x^2)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询