求解答极限
展开全部
x->0
tanx = x+(1/3)x^3 +o(x^3)
ln(1+tanx)
=ln[1+x+(1/3)x^3 +o(x^3) ]
=[x+(1/3)x^3] - (1/2)[x+(1/3)x^3]^2 + (1/3)[x+(1/3)x^3]^3 +o(x^3)
=[x+(1/3)x^3] - (1/2)[x^2+o(x^3)] + (1/3)[x^3+o(x^3)] +o(x^3)
=x - (1/2)x^2 + [ 1/3 +1/3 ]x^3 +o(x^3)
=x - (1/2)x^2 + (2/3 )x^3 +o(x^3)
sinx = x-(1/6)x^3 +o(x^3)
ln(1+sinx)
=ln[1 +x-(1/6)x^3 +o(x^3) ]
=[x-(1/6)x^3] - (1/2)[x-(1/6)x^3]^2 + (1/3)[x-(1/6)x^3]^3 +o(x^3)
=[x-(1/6)x^3] - (1/2)[x^2+o(x^3)] + (1/3)[x^3+o(x^3)] +o(x^3)
=x -(1/2)x^2 +( -1/6 +1/3) x^3 +o(x^3)
=x -(1/2)x^2 +(1/6) x^3 +o(x^3)
ln(1+tanx) -ln(1+sinx)
=[x - (1/2)x^2 + (2/3 )x^3 +o(x^3) ] -[x -(1/2)x^2 +(1/6) x^3 +o(x^3)]
= (1/2)x^3 +o(x^3)
lim(x->0) [(1+tanx)/(1+sinx) ]^(1/3)
=lim(x->0) e^{ ln[(1+tanx)/(1+sinx) ] /x^3 }
=lim(x->0) e^{ [ ln(1+tanx)-ln(1+sinx) ] /x^3 }
=lim(x->0) e^[ (1/2)x^3/x^3 ]
=e^(1/2)
tanx = x+(1/3)x^3 +o(x^3)
ln(1+tanx)
=ln[1+x+(1/3)x^3 +o(x^3) ]
=[x+(1/3)x^3] - (1/2)[x+(1/3)x^3]^2 + (1/3)[x+(1/3)x^3]^3 +o(x^3)
=[x+(1/3)x^3] - (1/2)[x^2+o(x^3)] + (1/3)[x^3+o(x^3)] +o(x^3)
=x - (1/2)x^2 + [ 1/3 +1/3 ]x^3 +o(x^3)
=x - (1/2)x^2 + (2/3 )x^3 +o(x^3)
sinx = x-(1/6)x^3 +o(x^3)
ln(1+sinx)
=ln[1 +x-(1/6)x^3 +o(x^3) ]
=[x-(1/6)x^3] - (1/2)[x-(1/6)x^3]^2 + (1/3)[x-(1/6)x^3]^3 +o(x^3)
=[x-(1/6)x^3] - (1/2)[x^2+o(x^3)] + (1/3)[x^3+o(x^3)] +o(x^3)
=x -(1/2)x^2 +( -1/6 +1/3) x^3 +o(x^3)
=x -(1/2)x^2 +(1/6) x^3 +o(x^3)
ln(1+tanx) -ln(1+sinx)
=[x - (1/2)x^2 + (2/3 )x^3 +o(x^3) ] -[x -(1/2)x^2 +(1/6) x^3 +o(x^3)]
= (1/2)x^3 +o(x^3)
lim(x->0) [(1+tanx)/(1+sinx) ]^(1/3)
=lim(x->0) e^{ ln[(1+tanx)/(1+sinx) ] /x^3 }
=lim(x->0) e^{ [ ln(1+tanx)-ln(1+sinx) ] /x^3 }
=lim(x->0) e^[ (1/2)x^3/x^3 ]
=e^(1/2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询