求[ln(x+√(1+x²)]/(1+x²)^3/2不定积分

[ln(x+√(1+x²)]/(1+x²)^3/2... [ln(x+√(1+x²)]/(1+x²)^3/2 展开
 我来答
教育小百科达人
2019-04-14 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

∫ ln[x+√(1+x^2)]/ (1+x^2)^(3/2) dx

x= tanu

dx = (secu)^2 du

∫ ln[x+√(1+x^2)]/ (1+x^2)^(3/2) dx

=∫ { ln(tanu +secu)/ (secu)^3 } [ (secu)^2 du]

=∫ [ ln(tanu +secu)/ secu ] du

=∫ cosu [ ln(sinu +1) - ln|cosu| ] du

=∫ [ ln(sinu +1) - ln|cosu| ] dsinu

= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ sinu.[ cosu/(sinu +1) + sinu/cosu ] du

= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [sinu/(sinu +1)] dsinu - ∫ [1- (cosu)^2]/cosu du

= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [ 1- 1/(sinu +1)] dsinu - ∫ (secu- cosu ) du

= sinu.[ ln(sinu +1) - ln|cosu| ] - [ sinu- ln|sinu +1| ] - ln|secu+tanu| +sinu + C

= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|sinu +1| ] - ln|secu+tanu| + C

= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|(sinu +1)/(secu+tanu)| + C

= sinu.[ ln(sinu +1) - ln|cosu| ] - ln|cosu| + C

=[x/√(1+x^2)] . [ ln(x/√(1+x^2) +1) +(1/2)ln(1+x^2) ] + (1/2)ln(1+x^2) + C

x= tanu

sinu = x/√(1+x^2)

cosu =1/√(1+x^2)

扩展资料:

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。

参考资料来源:百度百科——不定积分

茹翊神谕者

2022-06-26 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1609万
展开全部

简单计算一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tllau38
高粉答主

2018-10-27 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
∫ ln[x+√(1+x^2)]/ (1+x^2)^(3/2) dx
x= tanu
dx = (secu)^2 du
∫ ln[x+√(1+x^2)]/ (1+x^2)^(3/2) dx
=∫ { ln(tanu +secu)/ (secu)^3 } [ (secu)^2 du]
=∫ [ ln(tanu +secu)/ secu ] du
=∫ cosu [ ln(sinu +1) - ln|cosu| ] du
=∫ [ ln(sinu +1) - ln|cosu| ] dsinu
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ sinu.[ cosu/(sinu +1) + sinu/cosu ] du
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [sinu/(sinu +1)] dsinu - ∫ [1- (cosu)^2]/cosu du
= sinu.[ ln(sinu +1) - ln|cosu| ] - ∫ [ 1- 1/(sinu +1)] dsinu - ∫ (secu- cosu ) du
= sinu.[ ln(sinu +1) - ln|cosu| ] - [ sinu- ln|sinu +1| ] - ln|secu+tanu| +sinu + C
= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|sinu +1| ] - ln|secu+tanu| + C
= sinu.[ ln(sinu +1) - ln|cosu| ] + ln|(sinu +1)/(secu+tanu)| + C
= sinu.[ ln(sinu +1) - ln|cosu| ] - ln|cosu| + C
=[x/√(1+x^2)] . [ ln(x/√(1+x^2) +1) +(1/2)ln(1+x^2) ] + (1/2)ln(1+x^2) + C
where
x= tanu
sinu = x/√(1+x^2)
cosu =1/√(1+x^2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
scarlett110870
高粉答主

2018-10-27 · 关注我不会让你失望
知道大有可为答主
回答量:2万
采纳率:71%
帮助的人:4807万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

2018-10-27 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8101万
展开全部
令 x = tanu,
I = ∫ln(tanu+secu)(secu)^2du/(secu)^3
= ∫cosuln(tanu+secu)du = ∫ln(tanu+secu)dsinu
= sinuln(tanu+secu) - ∫sinu[(secu)^2+secutanu]du/(tanu+secu)
= sinuln(tanu+secu) - ∫sinusecudu
= sinuln(tanu+secu) - ∫sinudu/cosu
= sinuln(tanu+secu) + ln|cosu| + C
= xln[x+√(1+x^2)]/√(1+x^2) - (1/2)ln(1+x^2) + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式