3个回答
展开全部
解:∵∫[1/(x^2+2)^2]dx
=(√2/4)∫(cosy)^2dy (令x=√2tany,再化简)
=(√2/8)∫[1+cos(2y)]dy (应用倍角公式)
=(√2/8)[t+sin(2y)/2]-C (C是常数)
=(√2/8)[arctan(√2/x)+√2x/√(x^2+2)]-C
∴∫[(x^3+x-1)/(x^2+2)^2]dx
=∫[(x^3+2x)/(x^2+2)^2-x/(x^2+2)^2-1/(x^2+2)^2]dx
=∫[(x^3+2x)/(x^2+2)^2]dx-∫[x/(x^2+2)^2]dx-∫[1/(x^2+2)^2]dx
=∫d(x^4+4x^2+4)/(x^4+4x^2+4)-(1/2)∫d(x^2+2)/(x^2+2)^2-∫[1/(x^2+2)^2]dx
=2ln(x^2+2)+(1/2)/(x^2+2)-(√2/8)[arctan(√2/x)+√2x/√(x^2+2)]+C
=2ln(x^2+2)+(1/2)/(x^2+2)-(√2/8)arctan(√2/x)-(x/8)/√(x^2+2)+C。
=(√2/4)∫(cosy)^2dy (令x=√2tany,再化简)
=(√2/8)∫[1+cos(2y)]dy (应用倍角公式)
=(√2/8)[t+sin(2y)/2]-C (C是常数)
=(√2/8)[arctan(√2/x)+√2x/√(x^2+2)]-C
∴∫[(x^3+x-1)/(x^2+2)^2]dx
=∫[(x^3+2x)/(x^2+2)^2-x/(x^2+2)^2-1/(x^2+2)^2]dx
=∫[(x^3+2x)/(x^2+2)^2]dx-∫[x/(x^2+2)^2]dx-∫[1/(x^2+2)^2]dx
=∫d(x^4+4x^2+4)/(x^4+4x^2+4)-(1/2)∫d(x^2+2)/(x^2+2)^2-∫[1/(x^2+2)^2]dx
=2ln(x^2+2)+(1/2)/(x^2+2)-(√2/8)[arctan(√2/x)+√2x/√(x^2+2)]+C
=2ln(x^2+2)+(1/2)/(x^2+2)-(√2/8)arctan(√2/x)-(x/8)/√(x^2+2)+C。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询