三角函数的题 tan(A-B/2)=(a-b)/(a+b) 判断各边的关系
1个回答
展开全部
解析:由正弦定理等式转换为:
tan[(A-B)/2]=(sinA-sinB)/(sinA+sinB)
由三角函数的和差化积的公式得:
sinA-sinB=2cos[(A+B)/2]·sin[(A-B)/2]=2sin(C/2)·sin[(A-B)/2]
sinA+sinB=2sin[(A+B)/2]·cos[(A-B)/2]=2cos(C/2)·cos[(A-B)/2]
因此等式变换为:
tan[(A-B)/2]=tan(C/2)·tan[(A-B)/2]
所以
[tan(C/2)-1]·tan[(A-B)/2]=0
所以tan(C/2)=1或tan[(A-B)/2]=0
即C=90°或A=B
所以△ABC为直角三角形或等腰三角形.
各边的关系就不要说了吧.
tan[(A-B)/2]=(sinA-sinB)/(sinA+sinB)
由三角函数的和差化积的公式得:
sinA-sinB=2cos[(A+B)/2]·sin[(A-B)/2]=2sin(C/2)·sin[(A-B)/2]
sinA+sinB=2sin[(A+B)/2]·cos[(A-B)/2]=2cos(C/2)·cos[(A-B)/2]
因此等式变换为:
tan[(A-B)/2]=tan(C/2)·tan[(A-B)/2]
所以
[tan(C/2)-1]·tan[(A-B)/2]=0
所以tan(C/2)=1或tan[(A-B)/2]=0
即C=90°或A=B
所以△ABC为直角三角形或等腰三角形.
各边的关系就不要说了吧.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询