高等数学中值定理?

23怎么证明... 2 3怎么证明 展开
 我来答
q一一p

2020-11-02 · TA获得超过502个赞
知道小有建树答主
回答量:1799
采纳率:75%
帮助的人:96.8万
展开全部
中值定理表述如下:若函数f(x)在区间[a,b]满足以下条件:

(1)在[a,b]连续

(2)在(a,b)可导

则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a<c<b,使或f(b)-f(a)=f'(c)(b-a) 成立,其中a<c<b
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式