如何证明a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2<0

winelover72
2010-08-18 · TA获得超过4.2万个赞
知道大有可为答主
回答量:5901
采纳率:100%
帮助的人:3789万
展开全部
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
(a+b-c)^2=a^2+b^2+c^2+2ab-2bc-2ac
(a+b-c)^2-4ab=^2+b^2+c^2-2ab-2bc-2ac
a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2(代入上式)
=(a^2+b^2-c^2)^2-4a^2b^2(用平方差)
=(a^2+b^2-c^2+2ab)(a^2+b^2-c^2-2ab)
=[(a+b)^2-c^2][(a-b)^2-c^2]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
(a+b+c)(a+b-c)(a-b+c)(a-b-c) <0
这个不一定成立的,除非是三角形的三条边。
因为两边之和大于第三遍,两边之差小于第三边
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式