高手来~已知x属于[根号2,8],求f(x)=[log(2)(x/2)乘log(2)(x/4)]最大值,最小值与相应的x的值。
已知x属于[根号2,8],求f(x)=[log(2)(x/2)乘log(2)(x/4)]最大值,最小值与相应的x的值。...
已知x属于[根号2,8],求f(x)=[log(2)(x/2)乘log(2)(x/4)]最大值,最小值与相应的x的值。
展开
1个回答
展开全部
f(x)=[log2(x)-log2(2)][log2(x)-log2(4)]
=[log2(x)-1][log2(x)-2]
令a=log2(x)
√2<=x<=8
log2(√2)<=log2(x)<=log2(8)
1/2<=a<=3
y=f(x)=(a-1)(a-2)
=a²-3a+2
=(a-3/2)²-1/4
1/2<=a<=3
所以a=3/2,y最小=-1/4
a=3,y最大=2
a=3/2
log2(x)=3/2
x=2^(3/2)=√8=2√2
a=3,log2(x)=3
x=2³=8
所以
x=2√2,最小值=-1/4
x=3,最大值=2
=[log2(x)-1][log2(x)-2]
令a=log2(x)
√2<=x<=8
log2(√2)<=log2(x)<=log2(8)
1/2<=a<=3
y=f(x)=(a-1)(a-2)
=a²-3a+2
=(a-3/2)²-1/4
1/2<=a<=3
所以a=3/2,y最小=-1/4
a=3,y最大=2
a=3/2
log2(x)=3/2
x=2^(3/2)=√8=2√2
a=3,log2(x)=3
x=2³=8
所以
x=2√2,最小值=-1/4
x=3,最大值=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询