定积分是不具备四则运算的,但是定积分是适合线性运算法则的,四则运算有乘除,线性运算法则只有加减及结合、分配率。
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限,这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。