已知向量a=(cos3/2x ,sin3/2x) b=(cosx/2,-sinx/2) c=(1,-1)
已知向量a=(cos3/2x,sin3/2x)b=(cosx/2,-sinx/2)c=(1,-1)x属于[-,π/2π/2],设函数f(x)=(|a-c|^2-3)(|b...
已知向量a=(cos3/2x ,sin3/2x) b=(cosx/2,-sinx/2) c=(1,-1) x属于[-,π/2π/2],
设函数f(x)=(|a-c|^2-3)(|b+c|^2-3)
求f(x)的最大值和最小值 展开
设函数f(x)=(|a-c|^2-3)(|b+c|^2-3)
求f(x)的最大值和最小值 展开
展开全部
解:|a-c|^2-3=a^2-2ac+c^2-3=1-2(cos3/2x-sin3/2x)+2-3
=2(sin3/2x-cos3/2x)
|b+c|^2-3=b^2+2bc+c^2-3=1+2(cosx/2+sinx/2)+2-3
=2(cosx/2+sinx/2)
所以 f(x)=(|a-c|^2-3)(|b+c|^2-3)
=2(sin3/2x-cos3/2x)*2(cosx/2+sinx/2)
=8sin(3/2x-π/4)*sin(x/2+π/4)
=4〔cos(3/2x-π/4-x/2-π/4)-cos(3/2x-π/4+x/2+π/4)〕
=4〔cos(x-π/2)-cos2x〕
=4[sinx-(1-2sin^2 x )]
=8(sinx+1/4)^2-9/2
当sinx=-1/4时,f(x)min=-9/2
当sinx=1时,f(x)max=8
=2(sin3/2x-cos3/2x)
|b+c|^2-3=b^2+2bc+c^2-3=1+2(cosx/2+sinx/2)+2-3
=2(cosx/2+sinx/2)
所以 f(x)=(|a-c|^2-3)(|b+c|^2-3)
=2(sin3/2x-cos3/2x)*2(cosx/2+sinx/2)
=8sin(3/2x-π/4)*sin(x/2+π/4)
=4〔cos(3/2x-π/4-x/2-π/4)-cos(3/2x-π/4+x/2+π/4)〕
=4〔cos(x-π/2)-cos2x〕
=4[sinx-(1-2sin^2 x )]
=8(sinx+1/4)^2-9/2
当sinx=-1/4时,f(x)min=-9/2
当sinx=1时,f(x)max=8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询