向量的点乘、叉乘、点积、叉积。

 我来答
清风聊生活
高粉答主

2022-10-30 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3066
采纳率:100%
帮助的人:49.8万
展开全部

点乘,也叫向量的内积、数量积

运算法则为向量a·向量b=|a||b|cos<a,b>叉乘,也叫向量的外积、向量积。运算法则为|向量c|=|向量a×向量b|=|a||b|sin<a,b> 1运算法则 点乘 点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。

向量a·向量b=|a||b|cos<a,b> 在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘叉乘 叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

 |向量c|=|向量a×向量b|=|a||b|sin<a,b> 量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此向量的外积不遵守乘法交换率,因为向量a×向量b=-向量b×向量a在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘2几何意义 点乘的几何意义 可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。

 叉乘的几何意义 在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。 在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式