函数的有界性是什么意思?

 我来答
暑假工
2022-09-13 · TA获得超过6376个赞
知道答主
回答量:306
采纳率:100%
帮助的人:5.8万
展开全部

函数的有界性

定义:若存在两个常数m和M,使函数y=f(x),x∈D 满足m≤f(x)≤M,x∈D 。 则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。



注意:当一个函数,如果在其整个定义域内有界,则称为有界函数。当一个函数有界时,它的上下界不唯一。由上面定义可知,任意小于m的数也是这个函数的下界,任意大于M的数也是这个函数的上界。

另一定义是:存在常数M>0,使函数y=f(x).容易证明这两种定义是等价的

例题:函数cosx在(-∞,+∞)内是有界的.x∈D满足∣f(x)∣≤M,x∈D。

如何判断一个函数是否有界 就要看它是否无限趋近于一个常数,如是则有界,否则无界。

从上边趋近则有下界, 从下边趋近则有上界。


以上内容参考百度百科-有界性

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
内蒙古恒学教育
2022-11-08 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
一般来说,连续函数在闭区间具有有界性。例如:y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
sinx,cosx,sin(1/x),cos(1/x),arcsinx,arccosx,arctanx,arccotx是常见的有界函数。
函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式