利用导数证明不等式的方法
1个回答
展开全部
利用导数证明不等式的方法:
1、差值函数法:
主要步骤是: ①构造新函数h(x)= A(x)-B(x); ②求导h′(x)= A′(x)-B′(x); ③研究函数h(x)的单调性、极值、图象等(无法进行时,继续求导h′′(x)= A′′(x)-B′罩嫌′(x), 研究h′(x)的单调性、极值、图象等); ④通过h′(x)或h′′(x),获得h(x)的性质,进而实现证明不等式A(x)>B(x)的目标。
2、切线放缩法
直线y = x+1 是曲线y = ex 在(0,1)处的切线, 且在曲线y = ex 的下方, 所以有ex ≥x + 1(当且仅当x = 0 时等号成立)直线y = x - 1 是曲线y = ln x在(1,0)处的切线, 且物卜手在曲线y = ln x 的上方, 所以有ln x ≤x - 1(当且仅当x = 1 时等号成立)。
3、换元法
先将待证的不等式>0 等价变形为>0, 而此不等式中有弊册两个字母参数x1,x2, 不好处理.继续将其等价变形为为新元t,通过换元,则问题立即化为关于t 的一元不等式,利用差值函数法证明即可实现目标。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询