二重积分和三重积分有什么区别呢?

 我来答
池映波Hw
高粉答主

2023-04-21 · 关注我不会让你失望
知道小有建树答主
回答量:831
采纳率:100%
帮助的人:13.6万
展开全部

1、两者的实质不同:

二重积分的实质:表示曲顶柱体体积。

三重积分的实质:表示立体的质量。

2、两者的概述不同:

二重积分的概述:二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

三重积分的概述:设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为rᵢ(i=1,2,...,n),体积记为Δδᵢ,||T||=max{rᵢ};

在每个小区域内取点f(ξᵢ,ηᵢ,ζᵢ),作和式Σf(ξᵢ,ηᵢ,ζ)Δδᵢ,若该和式当||T||→0时的极限存在且唯一,则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。

3、两者的数学意义不同:

二重积分的数学意义:在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

三重积分的数学意义:如果空间闭区域G被有限个曲面分为有限个子闭区域,则在G上的三重积分等于各部分闭区域上三重积分的和。

4、用途不同

二重积分和三重积分并不都是可以用来计算体积的。二重积分可以用来计算体积,而三重积分不可以用来计算体积。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式