已知x,y,z属于R+,x+y+z=3,(1)求1/x+1/y+1/z的最小值,(2)证明:3<=x^2+y^2+z^2<9,求解题过程
1个回答
展开全部
(1)
1/x+1/y+1/z
=1²/x+1²/y+1²/z²
≥(1+1+1)²/(x+y+z)
=3²/3
=3,
故所求最小值为:3.
(2)
x²+y²+z²
=x²/1+y²/1+z²/1
≥(x+y+z)²/(1+1+1)
=3²/3
=3,
左边得证.
又,x、y、z∈R+,即xy+yz+zx>0.
∴x²+y²+z²-9
=x²+y²+z²-(x+y+z)²
=-2(xy+yz+zx)
<0,
∴x²+y²+z²<9.
故右边得证.
∴3≤x²+y²+z²<9。
1/x+1/y+1/z
=1²/x+1²/y+1²/z²
≥(1+1+1)²/(x+y+z)
=3²/3
=3,
故所求最小值为:3.
(2)
x²+y²+z²
=x²/1+y²/1+z²/1
≥(x+y+z)²/(1+1+1)
=3²/3
=3,
左边得证.
又,x、y、z∈R+,即xy+yz+zx>0.
∴x²+y²+z²-9
=x²+y²+z²-(x+y+z)²
=-2(xy+yz+zx)
<0,
∴x²+y²+z²<9.
故右边得证.
∴3≤x²+y²+z²<9。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询