若g(x),f(x)互为反函数,则g(f(x))=x.如何证明啊???
设y=f(x),那么g(y)=x,则g(f(x))=g(y)=x。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。
反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。
反函数性质介绍
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
(2)一个函数与它的反函数在相应区间上单调性一致。
(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性。
(5)严增(减)的函数一定有严格增(减)的反函数。
(6)反函数是相互的且具有唯一性。
(7)定义域、值域相反对应法则互逆(三反)。
以上内容参考 百度百科—反函数
g(f(x))=x
因为g(x)的反函数等于f(x)
如设y=f(x)
g(y)=x
代入得g(f(x))=x
扩展资料:
如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)。
大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则反函数也是奇函数。
2010-08-19