(2010?沈阳)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=1
(2010?沈阳)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.(1)求证:∠CDE=2∠B;(2...
(2010?沈阳)如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.(1)求证:∠CDE=2∠B;(2)若BD:AB=3:2,求⊙O的半径及DF的长.
展开
1个回答
展开全部
解答:(1)证明:连接OD.
∵直线CD与⊙O相切于点D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°. (2分)
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD. (3分)
又∵∠EOD=2∠B,
∴∠CDE=2∠B. (4分)
(2)解:连接AD.
∵AB是⊙O的直径,
∴∠ADB=90°. (5分)
∵BD:AB=
:2,
∴在Rt△ADB中cosB=
=
,
∴∠B=30°. (6分)
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°. (7分)
在Rt△CDO中,CD=10,
∴OD=10tan30°=
,
即⊙O的半径为
. (8分)
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5. (9分)
∵DF⊥AB于点E,
∴DE=EF=
DF.
∴DF=2DE=10. (10分)
∵直线CD与⊙O相切于点D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°. (2分)
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD. (3分)
又∵∠EOD=2∠B,
∴∠CDE=2∠B. (4分)
(2)解:连接AD.
∵AB是⊙O的直径,
∴∠ADB=90°. (5分)
∵BD:AB=
3 |
∴在Rt△ADB中cosB=
BD |
AB |
| ||
2 |
∴∠B=30°. (6分)
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°. (7分)
在Rt△CDO中,CD=10,
∴OD=10tan30°=
10 |
3 |
3 |
即⊙O的半径为
10 |
3 |
3 |
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5. (9分)
∵DF⊥AB于点E,
∴DE=EF=
1 |
2 |
∴DF=2DE=10. (10分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询