如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC. (1)求证:MN是半圆的切线.(2)

如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC.(1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB... 如图,△ABC内接于半圆,AB为直径,过点A作直线MN,若∠MAC=∠ABC. (1)求证:MN是半圆的切线.(2)设D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG. 展开
 我来答
冯谖荣枯7321
推荐于2016-06-26 · 超过56用户采纳过TA的回答
知道答主
回答量:155
采纳率:0%
帮助的人:54.1万
展开全部
(1)证明见解析;(2)证明见解析.


试题分析:(1)根据圆周角定理推论得到∠ACB=90°,即∠ABC+∠CAB=90°,而∠MAC=∠ABC,则∠MAC+∠BCA=90°,即∠MAB=90°,根据切线的判定即可得到结论;
(2)连AD,根据圆周角定理推论得到∠ABC=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.
试题解析:(1)证明:∵AB为直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
而∠MAC=∠ABC,
∴∠MAC+∠BCA=90°,即∠MAB=90°,
∴MN是半圆的切线;
(2)解:如图

∵AB为直径,
∴∠ACB=90°,
而DE⊥AB,
∴∠DEB=90°,
∴∠1+∠5=90°,∠3+∠4=90°,
∵D是弧AC的中点,即弧CD=弧DA,
∴∠3=∠5,
∴∠1=∠4,
而∠2=∠4,
∴∠1=∠2,
∴FD=FG.
考点: 1.切线的判定;2.圆周角定理.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式