如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得

如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.... 如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C. 则A′C长度的最小值是 . 展开
 我来答
有人言一句真Q
2014-09-14 · TA获得超过312个赞
知道答主
回答量:129
采纳率:0%
帮助的人:60.7万
展开全部
.


试题分析:如图1,连接CM,过M点作MH⊥CD交CD的延长线于点H,
则由已知可得,在Rt△DHM中,DM=1,∠HDM=60°,∴ .∴  .
.
又∵根据翻折对称的性质,A′M=AM=1,
∴△CA′M中,两边一定,要使A′C长度的最小即要∠CM A′最小,此时点A′落在MC上,如图2.
∵M A′=NA=1,∴ .
∴A′C长度的最小值是 .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式