已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在BC上,取CE

已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在BC上,取CE的中点F,连接DF、BF.(1)探索DF... 已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在BC上,取CE的中点F,连接DF、BF.(1)探索DF、BF的数量关系和位置关系,并证明;(2)将图1中△ADE绕A点顺时针旋转45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?证明你的结论;(3)将图1中△ADE绕A点转动任意角度(旋转角在0°到90°之间),再连接CE,取CE的中点F(如图3),问(1)中的结论是否仍然成立?证明你的结论. 展开
 我来答
手机用户05552
推荐于2020-02-25 · 超过62用户采纳过TA的回答
知道答主
回答量:106
采纳率:0%
帮助的人:150万
展开全部
(1)DF=BF且DF⊥BF.(1分)
证明:如图1:
∵∠ABC=∠ADE=90°,AB=BC,AD=DE,
∴∠CDE=90°,∠AED=∠ACB=45°,
∵F为CE的中点,
∴DF=EF=CF=BF,
∴DF=BF;(2分)
∴∠DFE=2∠DCF,∠BFE=2∠BCF,
∴∠EFD+∠EFB=2∠DCB=90°,
即:∠DFB=90°,
∴DF⊥BF.(3分)

(2)仍然成立.
证明:如图2,延长DF交BC于点G,
∵∠ABC=∠ADE=90°,
∴DE∥BC,
∴∠DEF=∠GCF,
又∵EF=CF,∠DFE=∠GFC,
∴△DEF≌△GCF,
∴DE=CG,DF=FG,(4分)
∵AD=DE,AB=BC,
∴AD=CG,
∴BD=BG,(5分)
又∵∠ABC=90°,
∴DF=BF且DF⊥BF.(6分)

(3)仍然成立.证明:如图3,延长BF至点G,使FG=BF,连接DB、DG、GE,
在△EFG与△CFB中,
FG=BF
∠EFG=∠CFB
EF=CF

∴△EFG≌△CFB,
∴EG=CB,∠EGF=∠CBF,
∴EG∥CB,
∵AB=BC,AB⊥CB,
∴EG=AB,EG⊥AB,
∵∠ADE=90°,EG⊥AB,
又∵∠AED=∠DAE,
∴∠DAB=∠DEG,
在△DAB和△DEG中,
AD=DE
∠DAB=∠DEG
AB=EG

∴△DAB≌△DEG(SAS),
∴DG=DB,∠ADB=∠EDG,(7分)
∴∠BDG=∠ADE=90°,
∴△BGD为等腰直角三角形
∴DF=BF且DF⊥BF.(8分)
来自濠城镇活力满满的流星
2019-05-05 · TA获得超过154个赞
知道答主
回答量:879
采纳率:9%
帮助的人:24.3万
展开全部
(1)DF=BF且DF⊥BF.(1分)证明:如图1:∵∠ABC=∠ADE=90°,AB=BC,AD=DE,∴∠CDE=90°,∠AED=∠ACB=45°,∵F为CE的中点,∴DF=EF=CF=BF,∴DF=BF;(2分)∴∠DFE=2∠DCF,∠BFE=2∠BCF,∴∠EFD+∠EFB=2∠DCB=90°,即:∠DFB=90°,∴DF⊥BF.(3分)(2)仍然成立.

证明:如图2,延长DF交BC于点G,∵∠ABC=∠ADE=90°,∴DE∥BC,∴∠DEF=∠GCF,又∵EF=CF,∠DFE=∠GFC,∴△DEF≌△GCF,∴DE=CG,DF=FG,(4分)∵AD=DE,AB=BC,∴AD=CG,∴BD=BG,(5分)又∵∠ABC=90°,∴DF=BF且DF⊥BF.(6分)(3)仍然成立.证明:如图3,延长BF至点G,使FG=BF,连接DB、DG、GE,在△EFG与△CFB中,∵FG=BF∠EFG=∠CFBEF=CF,

∴△EFG≌△CFB,∴EG=CB,∠EGF=∠CBF,∴EG∥CB,∵AB=BC,AB⊥CB,∴EG=AB,EG⊥AB,∵∠ADE=90°,EG⊥AB,又∵∠AED=∠DAE,∴∠DAB=∠DEG,在△DAB和△DEG中,∵AD=DE∠DAB=∠DEGAB=EG∴△DAB≌△DEG(SAS),∴DG=DB,∠ADB=∠EDG,(7分)∴∠BDG=∠ADE=90°,∴△BGD为等腰直角三角形,∴DF=BF且DF⊥BF.(8分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式